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Continuum flow theory (Poiseuille flow, Fick diffusion) is of dubious validity for
small pores. For gases. kinetic theory permits an extension of continuum theory 1o
Knudsen near-continuum slip-flow. by means of a change only in boundary condi-
tions. The range of validity of near-continuum gas flow theory is for channel widths
larger than a small number of mean free paths. Here a comparable kinetic theory ex-

s

tension of continuum theory has been developed for liquids. A *“saltation,” near
rolling, boundary condition is shown to be applicable. The range of validity of this
near continuum liquid flow theory is for channels wider than about five molecular
diameters (i.c., 15 A for water). Predictions of the theory are tested against the well
calibrated data of Beck and Schultz (1972) as well as data from biological mem-
branes. The results are compared with the continuum theory used by Renkin (1954)
and others.

INTRODUCTION

The problem undertaken in this paper is the description of the flow of water and
of various sized solute molecules through natural and artificial membranes. For
small membrane pores or channels, Navier-Stokes viscous flow theory and Fick
diffusion theory are of dubious validity, whereas they are correct above some crit-
ical size. We propose to apply the results of a kinetic theory of liquids, developed
at length elsewhere (Iberall and Schindler, 1973) to membrane pores and to recon-
cile flow theories for large and small pores. Finally, we compare those results with
experimental work.

In 1951, Pappenheimer et al. (1951) applied continuum hydrodynamic results
(Fick diffusion, Poiseuille flow) to compute pore sizes in natural membranes.
Later, Renkin (1954) suggested that the diffusion through membranes D,,, relative
to that in pure water Dy, can be described by a combination of two factors. The
first is the steric hindrance proposed by Ferry (1936) and represents the fraction
of the pore cross section area available to the diffusing molecule. It is assumed
that any molecule which hits the lip of the pore cannot enter the pore. The second
factor was derived by Faxen (1922) for a large molecule moving through fluid-
filled channels or tubes. It represents the effect of the channel walls in changing
the Stokes drag coefficient used to describe such motion in the absence of nearby
walls. Renkin combined these results and obtained
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where R, =radius of solute molecule, R, = radius of (assumed circular) pore.

Renkin’s equation has been widely used in studies of solute flows through
membranes. However, it is well known that for small pores the boundary condi-
tions assumed in the derivation of Eq. (1) are not valid and, in fact, the entire
Navier-Stokes analysis may not be valid. Below some minimal pore size, one
must modify either boundary conditions or equations sets or both. However, that
minimal pore size is still a matter of discussion (Beck and Schultz, 1972: Levitt,
1973). In the appendix we suggest that the Navier-Stokes equation set, with the
appropriate boundary conditions, may be valid to pores as small as 15 A.

Can a strictly continuum theory for this phenomenon be developed? In a recent
paper Mikulecky (1972) attempted to apply a continuum hydrodynamics forma-
lism and to model the wall-fluid interaction. He assumed “‘zero” velocity and
velocity gradient at the walls. While he is able to get an analytic result for the
velocity profile, he states that “the continuum mechanical approach . . . like the
phenomenological theory of non-equilibrium thermodynamics . . . leads to no
direct interpretation of mechanisms” and that “the presence of velocity gradients
presents a severe limitation to the application of most popular versions of
nonequilibrium thermodynamic formalism.”” That formalism, we have shown, is
equivalent to the Navier-Stokes equations. Thus, one is compelled to develop a
kinetic theory for flow processes in narrow spaces.

For gas flows, the modifications required for small pore sizes are well under-
stood. As pore sizes grow smaller, one proceeds from Poiseuille’s law to the
Knudsen slip-flow law (via a change in boundary conditions) to free molecular
flow (via an entirely different theory). In the last case, continuum hydrodynamics
no longer applies at all, and one must resort to a purely kinetic theory. For the
Knudsen slip-flow, in the near-continuum regime. a combination of flow equations
from continuum theory and boundary conditions from kinetic theory provides an
adequate model (Kennard, 1939). In this paper, we seek the liquid theory counter-
part to Knudsen gas slip-flow. Thus, the Navier-Stokes equations are assumed to
be valid (see Appendix), while new boundary conditions, based on kinetic theory,
are sought.

BOUNDARY CONDITIONS

The following view, based on a Kinetic theory (Iberall and Schindler. 1973), can
be used to obtain suitable boundary conditions between the flowing water (and/or
solute) and the pore walls. The key point is that water molecules which strike a
“solid” surface generally tend to stick to it and “smooth™ it out. Then the next
layer of water molecules rolls over the smoothed surface. (The sides of the pore
are generally rough. Thus, we view this first layer as coating and smoothing the
pore surface, thereby producing an effective smoothed pore radius or slit width
which we identify as the measurable quantity.)

When this boundary condition is applied to a pore wide enough that the Navier-
Stokes equations hold. the velocity profile across the pore is

v(r) 22% (sz_rZ) +"\vulls (2)



KINETICS OF MEMBRANE TRANSPORT 491

where r= distance from center of pore, v, = velocity of rolling layer near the
wall, g = pressure gradient (dynes/cm?/cm), u = viscosity (gm/cm/sec). When a
molecule moves from the layer next to the rolling layer into the rolling layer, its
velocity tangent to the surface changes by

gR 2 Ru' Ru' 2
Av = V(Rp - 2Ru) ™ Vwan = #p ['k: - <_§; 9

where R, = radius of a water molecule. If
Av=fv(R, —2R,),

where f= fraction of moment lost, then

(755) veun = av.

e () 22 [ (2]

The mean volume flow across the section is

Then

0= f:DZWr\’(I')dI‘
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Estimation of the fractional transfer of momentum is a very difficult theoretical
problem. It is complicated by lack of knowledge of the intermolecular forces
between fluid and wall molecules, the shapes of the molecules, the coefficients of
rolling or sliding friction of one molecule past a layer of molecules. To provide a
start in the problem, here we present a very elementary model which, hopefully, is
not too far removed from some reasonable effect of the various physical processes
involved. Thus, we make a simple application of the laws of conservation of
energy and momentum. We assume that in moving into the rolling layer, a mole-
cule loses linear momentum and gains angular momentum under the influence of
an assumed impulse J (Fig. 1):

or

impulse J

FiG. 1. The “saltation” of molecules at the pore walls.
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linear momentum: mv= my,—J,
angular momentum: (2 mR,25) (v/R,) =JRy,

where (v/R,) = angular velocity, (2 mR,?/5) = moment of inertia of a sphere.
Then, very easily

v=2>5 v,/7 4)
so that
f= (= v)fve = 2/7.

(Note: in a simpler ‘‘kinematic” nonsaltation model, one would have presumed
f= 1/2 whereby the rolling molecule can accommodate to both the wall and its
neighboring “sliding” layer. This points up the need for more work on the details
of this calculation. The factor (1 — f)/f is rather sensitive to the value of f)
Energy is not conserved; it is lost to the frictional impulsive force J.
This value of f=2/7 can then be applied to the flow equation (3) yielding

_mRy'¢ { Ry Ru'2}
Q= 8w l+20Rp ZOsz.

Finally, when the geometric hindrance factor is added (Renkin, 1954)

= ok {10 - gef{i - R
Q 81 1+20 R, 20 R, 1 R,| " (3)
(The factor for drag correction, (1 — 2.10 R,/R, + - - ), is now omitted because

the effect of nonzero velocities at the walls is already taken into account, and more
than a simple modification is required to account only for the boundary conditions
at the surface of each water molecule.)

APPLICATION

The flow equation (5) is proposed to be valid for both artificial and natural
membranes for which the Navier-Stokes equations with modified (here, rolling)
boundary conditions provide an adequate description. Equation (5) can be tested
with the data found in the experimental paper of Beck and Schultz (1972).
Because of their control of the geometric pore configuration, the test of the theory
will be much sharper than for natural membranes. For their study they (a) made
their own microporous membranes using fission fragments from U*%; (b) mea-
sured pore sizes by water flow, air flow, and electron microscopy: and (c)
measured the diffusion of various solutes through these pores. The water flow
measurement of pore radius was made using Poiseuille’s law, with zero velocity
boundary conditions at the walls

mgR,

. (6)

where R,, = computed pore radius.
Our modified flow formula, Eq. (5), can be used to obtain corrections to the pore
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Fi1G. 2. Ratio of a corrected to the Poiseuillean pore radius R,[Ry, vs Poiseuillean pore radius R, for
water flow. Solid line is theoretical result (Eq. (7)). Crosses are the ratios of experimental radii, from

air flow measurements and Knudsen slip-flow, to Poiseuillean pore radii R./R,, vs R,, (from measure-
ments of Beck and Schultz (1972)).

radii R,, obtained from this simple equation. Since the flows are equal

t— R4 Ry 5o Rl[; _Ru)*
R,*=R, {1 + 20 R, 20 sz}{l R,,} . (7)

The reliability of this relation can be checked with the air flow data of Beck and
Schultz (1972). Pore radii were determined from the well established Knudsen gas
slip-flow result. Generally, the radii derived from the air flow measurements were
smaller than those from the water measurements. F igure 2 shows their R, (air)/ R,,
(water) vs R,, (water). Also shown is Ry/R,, vs R, from Eq. (7). The theoretically
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FiG. 3. Data of Beck and Schultz ((1 972), circles) compared to Renkin theory (solid line) for the ratio
of apparent to bulk diffusion coefficients D,,[ Dy, for small pores (R, < 100 A, open circles) and large
pores (R, > 100 A, filled circles).
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FiG. 4. Data of Beck and Schultz (1972), corrected by theory (Eq. (7)) for small pores (R, < 100 A,
open circles) and large pores (R, > 100 A, filled circles), compared to Renkin large pore theory and
proposed small pore theory (Eq. (8)) for D,/ D,.

corrected pore radii are in fair agreement with the radii obtained from the air flow
measurements, especially for the smaller pores where we expect the new theory to
be better than the simple Poiseuille law.

Beck and Schultz measured the ratio D, /D, for several solute and pore sizes
and compared the results to the Renkin formula, Eq. (1). Their data are given
in Fig. 3, where D,/D, is plotted against R,/R,,. When the correction above is
applied to R/R,,.

R, _(R>{ R, _ R_}{ &)
(Rm) “\RJU TR, TR IR

a new graph of D,/D, vs R,/R, can be made from the Beck and Schultz data
(Fig. 4).

The corrected data for the larger pores (filled circles) now fall somewhat closer
to the Renkin curve. This is not surprising because that curve should be valid for
large pores, where the Navier-Stokes equations, with zero velocity boundary
conditions, are certainly valid.

Data for small pore (open circles) sizes (or appreciable R/R,) do not fit
Renkin’s curve so well. Here the boundary conditions applicabie to the diffusing
solute molecules should be taken into account.

SMALL PORE THEORY

For small pores, the theory for the flow of large solute molecules must be re-ex-
amined. The small water molecules maintain an essentially Navier-Stokes flow
(with proper boundary conditions) perhaps down to R, =~ 15 A (see Appendix).
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However, each solute molecule proceeds by means of a “random walk” and,
because of the narrowness of the pore, makes many interactions with the pore
walls during its passage. We will assume the velocity profile of the solute mole-
cules 1o be the following: In the ““core” of the pore the molecules have an essen-
tially constant diffusive velocity v,, while at the wall they roll with a velocity vy.y.
By analogy with the water flow boundary condition, we assume that v,.,; and v,
are related by Eq. (4), namely, vyay = 5/7 Vo. The mean solute flow velocity v is
the area weighted average

vor(R, — 2R)? + 5 vemw[R,2 — (R, — 2R))7

v =

7R ,?
SO
¥ _,_8R 8RS
- 1 TTR, TTRE

Finally, noting that D,,/D, is proportional to v/v, and adding the steric hindrance

factor give
D, _{,_8R, 8RS _R}?
p{-TR el -®) ®

This curve is shown in Fig. 4. Most of the Beck and Schultz data lie between it
and the Renkin curve.

SUMMARY

The two curves in Fig. 4 represent limiting theories for solute flow through
microporous membranes. The Renkin curve is valid when R,/R, is small enough
that wall velocities are essentially negligible. The other curve is derived by the
introduction of nonzero velocity boundary conditions (here specifically, rolling) at
the walls of the pores.

The same theories are presumed to be applicable to permeability studies of nat-
ural membranes. We have collected a fair sampling of natural membrane data for
comparison with this theory. However, the large scatter in the experimental data
inhibits us from presenting those results here. (In addition, a second issue is in-
volved: whether in living membranes one is dealing with pore, slits, or some other
structure of the imagination.) The natural membrane data would tend only to
obscure our main conclusion, namely, that a consistent theory for flow in large and
small pores can be developed, partly out of continuum theory, and partly out ofa
kinetic theory.
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APPENDIX

The Navier-Stokes equations are based on a continuum hydrodynamic forma-
lism. Their validity, therefore, depends on there being sufficient space and time
available that the spatial and temporal averages required for the continuum
description can be adequately performed. Gases and liquids present different
requirements for this averaging, the gas case being considerably simpler.

Gases. Gases are characterized by a mean free path / and a collision time 7. As
long as a space larger than about 10/ and a time greater than about 107 are
provided, the Navier-Stokes equations are valid. For the typical ideal gas,
10/ = 5000 A and 107 = 107°. Between 10/and 3/and/or 107 and 3, continuum
(or, now, near-continuum) hydrodynamics can still be used, but with modified
boundary conditions (e.g., slip-flow).

Liquids. For liquids, the temporal requirements become more complicated. In-
stead of only one time scale, there are now three (Iberall and Schindler, 1973): the
time that it takes a molecule to vibrate in the intermolecular potential well of its
surrounding neighbors (depending on intermolecular potential, molecular size and
mass, and number of near neighbors), 7, = 2 X 1073 sec (for water); the time that
it takes to escape from that *“‘cage™ (depending on 7, and fluctuation probabilities)
1, = 4 X 10712 sec; the time that it takes to diffuse one molecular diameter, the
analogous “mean free path” (depending on molecular size and diffusion con-
stant) 7, =3 X 107!'. After about 10 vibrations, a molecule achieves thermal
equilibrium. After about 20 vibrations, it escapes from its surrounding cage.
After about 10 escape times, the molecule is in pressure equilibrium with the
rest of the liquid. The fact that 107, = 7; means that one diffusion time 74 (that is,
one Stokes-Einstein diffusion time) is sufficient for both thermal and pressure
equilibrium. Thus, Stokes-Einstein diffusion, while it appears to arise from a
molecular kinetic theory and while it holds over a volume large enough to con-
tain merely 20 or 30 molecules, is already close to a continuum theory. This is
the justification for our using Navier-Stokes continuum theory, with appropriate
“rolling” boundary conditions, for volumes perhaps as small as 3 molecules by 3
molecules by 3 molecules for continuum and then 2 more molecular diameters
for rolling at the wall. That is, once a molecule is closely surrounded by
neighbors, any movement which it makes outside that surrounding cage is
already near continuum.
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